Mainland High School
Home
Introduction

Components
   One
   Two
     Product
   Three

Background
   Accidents
   Barges
   Carbon Fiber
   History
   Navigation
   Ports
   Sonar
   Steel
   Towboats

Project
   Assessment
   Bibliography
   Glossary
   Team


Component One

Prepare a 200- to 300-word history about the National Critical Technology (NCT) technical application your team has selected to solve a local or national problem.

A centerboard is a retractable device (that turns on a pivot point) and is attached to a sailboat or any other type of large commercial ships. Centerboards, or leeboards, were first documented in a manuscript in 759 by Li Chuan for Junks, or Chinese sailboats, which was later adapted to Portuguese and Dutch ships around 1570.

Chinese Junk
Courtesy of Wikipedia: Chinese Junk

Carbon fiber was initially discovered in the late 1800's by Thomas Edison when he was testing thousands of different materials to use as a filament in the light bulb, but its true abilities were still unknown. Near the end of World War II Union Carbide developed a carbonized rayon cloth for the U. S. Air Force as a replacement for fiberglass in rocket nozzle exit cones and re-entry heat shields. Carbon fiber began its entry into common use in 1956 with the opening of the Parma Technical Center. There Roger Bacon experimented with carbon arcs in 1958. He found that small carbon stalactites formed on one of the electrodes; when a stalactite was broken open there were small flexible and resilient carbon “whiskers” embedded in the stalactite wall.

In 1822 Daniel Colloden used an underwater bell to calculate the speed of sound. Later, in 1906, Lewis Nixon invented the first sonar device to detect icebergs. Sonar became a hot topic as World War I progressed because of the need to detect submarines. These early passive listening devices were called ASDICS. In 1915 Paul Langévin invented the first sonar device using the piezoelectric properties of quartz. One year later, the sinking of a submarine was first recorded on a hydrophone. By 1918 both England and the United States had invented active sonar, where signals are sent as well as received. Later developments of sonar included the echo sounder, or depth detector, rapid-scanning sonar, side-scan sonar, and WPESS sonar.

Cite three detailed examples of research done in the past 3 to 5 years which focused on the NCT technical application your team selected. Include:
   the funding agency,
   the principal investigator's name, and
   the institution where the research is or was being conducted.

Prior to citing our related grants, we would like to present three patents granted by the US Patent Office that directly support our product.
  • #5150661 Retractable steering device for cargo barges that increases maneuverability by providing a pivot point or points when altering course by William B Rudolph (September 29, 1992) outlines a device that can be fitted to a compartment within a retrofitted barge hull, that can be withdrawn into the hull or lowered into position below the hull to act as a keel-type device to resist lateral planing in an unloaded barge tow, the device can be rotated to create optimal performance in the extended position.
  • #5235926 Antiskid device for flat bottom boats by Earl R Jones (August 17, 1993) outlines a pair of pivotally attached fins that are hinged at the leading edge to the underside of a flat bottom boat, to allow them to pivot away from and clear underwater obstacles without being damaged, and can return to the lowered position after the obstacle has been cleared.
  • #6591772 Slidable and impact reducing keel by Per Larsen (July 15, 2003) outlines a device that utilizes a tongue and groove connection to pivot a fin type device into a receiver within the ships hull. The fin device can also be adjusted to variable positions along the underside of the ships hull, to shift the vesels center of mass.
Now we would like to present three grants that support our product:
  1. The first grant was received by Gary R. Consolazio, Ph.D an associate professor of civil and coastal engineering at the University of Florida form the Florida Department of Transportation (project BC-354 RPWO #23). He conducted an in-depth experiment concerning the collision of barges with bridges. He received $1 million dollars in grant money from the Florida Department of Transportation to conduct his research on the former St. George’s Island Causeway Bridge in Franklin County, Florida. During the months of March through April, 2004, Dr. Consolazio’s team actually crashed a 151-foot long barge carrying 280-tons (4 trials) and 600-tons (8 trials) of cargo into the bridge’s pier. His research uncovered more accurate ways to test dynamic impact loads that will hopefully reduce the cost of future projects; and more importantly, make the calculations of pier strength more precise. His research is especially relevant for Florida, where one of the most infamous collisions occurred in 1980 when a freighter brought down a section of the Sunshine Skyway Bridge in St. Petersburg, sending 35 people to their deaths.

  2. The second grant was received by Robert Haddon, Peter Eklund, Eric Grulke, and Frank Derbyshire, professors at the University of Kentucky on February 28, 2003 from the National Science Foundation (Award Number 9809686). They are researching ways to synthesize carbon fibers using natural sources. The value of the grant totaled $6.7 million which was to include an Advanced Carbon Materials Center within UK where the research would be taking place. The goal of this research is to yield reduced production costs and a lesser environmental impact from manufacturing which is relevant because current manufacturing is energy-heavy and has a high toll on the environment.

  3. The final grant was awarded on July 14, 2004 to Oguzhan Bayrak and James Jirsa of the University of Texas at Austin by the National Science Foundation (Award Number 0324592). They are researching the use of carbon fiber sheets to reinforce materials not able to withstand the loads put upon them in extreme circumstances otherwise. The grant has been awarded to date $100,116.

Based on the research your team has done, explain how the NCT application chosen has advanced scientific knowledge.

Carbon fiber is a light but extremely strong fiber which is a pyrolyzing (a transformation of a compound by heat) synthetic fiber, for example rayon, until it is fully charred. It is used for extremely high-strength composites. Throughout its discovery, scientists have found a multitude of uses in everyday life and production. It goes from the very simple, tennis racquet strings, to the very sophisticated, x-ray shielding. We also use it in high-performance vehicles and automotive steering system components. The reinforced carbon-carbon (RCC) is used structurally in such high-temperature applications as the leading edges of the space shuttles. A non-polymer material can be mixed for a matrix for carbon fibers. This fiber is found in filtration of high-temperature gases and also can make the anti-static component in high-performance clothing. Scientists now even think they can use carbon fiber in the construction of buildings and bridges to make them earthquake-proof.

Carbon fiber is used to make many parts of a boat such as masts, sails, spreaders, booms and spinnaker poles. Carbon fiber is preferred because it is light and extremely strong. It is also preferred because it can blend in to traditional designs. One draw back is that Carbon fiber is extremely expensive. Carbon fiber is also being used by the Swedish navy to reduce the various detection methods used for spotting ships including visually, radar, sonar, and even infrared.

carbon fibers
Courtesy of Bio-Carbon Tech Co, Ltd.


Sonar has also made many advances in our scientific knowledge. One application developed by the military is called Target Motion Analysis (TMA). This process provides the targets range, course and speed, by marking the direction the sound comes from at different times. The collected information is calculated by using geometric techniques and making inferences about limiting cases. Sonar is also used to detect underwater mines, submarines, as fish finders for commercial fishing companies, depth detection for diving clearance and communication at sea. The sonar in our device will act autonomously as a controller to raise and lower our centerboard.







About.com
  http://www.answers.com/topic/carbon-fiber
  http://inventors.about.com/od/sstartinventions/a/sonar_history.htm
American Chemical Society
  http://acswebcontent.acs.org/landmarks/landmarks/carbon/car2.html
  http://acswebcontent.acs.org/landmarks/landmarks/carbon/car3.html
  http://acswebcontent.acs.org/landmarks/landmarks/carbon/car7.html
Applied NanoFluorescence
  http://www.appliednanofluorescence.com/Nanotube%20fluorescence%20Science%20paper.pdf
Bio-Carbon Tech Co, Ltd
  http://www.biocarbon.co.kr/sub6_4.htm
Composites World
  http://www.compositesworld.com/hpc/issues/2004/January/352
Florida Deptartment of Transportation
  http://www.dot.state.fl.us/research-center/Completed_Proj/Summary_STR/FDOT_BC354_23.pdf
Military.com
  http://www.military.com/soldiertech/0,14632,Soldiertech_StealthShips,,00.html
National Science Foundation
  http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=9809686
  http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0324592
National Sonar Association
  http://www.sonarshack.org/milestones.htm
Science Direct
  http://dx.doi.org/10.1016/j.carbon.2004.06.031
Scottish Institute for Enterprise / Napier University (Edinburgh)
  http://www.sie.ac.uk/components/documents/casestudies/lockforth-A.pdf
SE Missourian
  http://www.semissourian.com/story/75819.html
United States Patent and Trademark Office
  Patent #5150661
  Patent #5235926
  Patent #6591772
University of Florida
  http://users.ce.ufl.edu/~grc/
  http://www.rgp.ufl.edu/publications/explore/v09n3/story3.html
  http://www.eng.ufl.edu/documents/floridaengineer/fe_fa03.pdf
University of Kentuck, Center for Applied Research
  http://www.caer.uky.edu/energeia/PDF/vol9-6.pdf
Wikipedia: Chinese Junk
  http://en.wikipedia.org/wiki/Junk_%28ship%29
  http://en.wikipedia.org/wiki/Sonar


Copyright © 2006-2025
Mainland High School ISTF
Volusia County Schools
All rights reserved