Beginning Activity:

Introduction-

On a hot sunny day, what have you noticed as you walk barefoot across the grass or the pavement or the sand or in the water? Each substance has a different specific heat which means that it can absorb different amounts of heat α which means that it can absorb different amounts of heat α which means that it can absorb different rate.

Purpose-

During this investigation you will collect data to compare the specific heat of sand and water.

Materials-	
TI 83 plus	100 gm. Sand
CBL2	100 gm. Water
2 temp. probes	heat source (lamp)
2 Styrofoam cups	_

Standard Preparation- For each group

- 1. Mass out 100 gm. of water; pour into Styrofoam cup and label sample 1.
- 2. Mass out 100 gm. of sand; pour into second Styrofoam cup and label sample 2.
- 3. Connect TI 83 plus to CBL2.
- 4. C

Analysis-

- 1. Display graph on calculator.
- 2. Draw your graph below.

- 3. What is the independent variable?
- 4. What is the dependent variable?
- 5. What are the constants?

6. Press "trace" and use arrow keys to find the following values for water and sand?

Time (sec)	Water (C deg.)	Sand (C deg.)
0		
30		
60		
90		
120		
150		
180		

- 7. The faster a substance heats, the lower its specific heat. Which of the two substances tested has the lowest specific heat?
- 8. place a graph of water and asphalt here

Using the graph above, determine if the specific heat of asphalt is greater or less than water.

Explain what this means:

Extensions-

- 1. Choose another substance and repeat the experiment to determine the graph for specific heat.
- 2. Pick 3 substances and predict the order of specific heat from least to greatest and conduct the experiment to test your hypothesis.
- 3. Using the formula ______, and values from your graph, determine the specific heat values for all substances tested.
- 4. Using what you have discovered about the specific heat of water, discuss the impact of bodies of water on the temperatures of adjacent ecosystems.